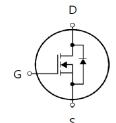


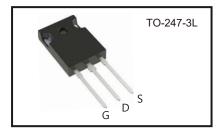
# **DAC080N120PY4**

# Silicon Carbide Enhancement Mode MOSFET

### **Features**


- High switching speed with a low gate charge
- Fast intrinsic diode with low reverse recovery
- Simple to drive with -5V/+18V gate
- · Increased power density
- Pb-free, Halogen Free, and RoHS Compliant

### **Benefits**


- Lower capacitance
- Higher system efficiency
- · Easy to parallel

# **Applications**

- Solar inverters
- · DC/DC converters
- · Switch mode power supplies
- · Induction heating
- · Motor drives



| $V_{DSS}$             | 1200V |
|-----------------------|-------|
| I <sub>D(@25°C)</sub> | 30A   |
| $R_{DS(ON)typ.}$      | 80mΩ  |



Package Dimensions

# A - A - E1 - A1

| Unit | : | mm |
|------|---|----|
|      |   |    |

| Symbol | Min      | Max   |  |  |
|--------|----------|-------|--|--|
| Α      | 4.80     | 5.20  |  |  |
| A1     | 2.29     | 2.54  |  |  |
| A2     | 1.90     | 2.10  |  |  |
| b      | 1.10     | 1.30  |  |  |
| b1     | 1.91     | 2.20  |  |  |
| b2     | 2.92     | 3.20  |  |  |
| С      | 0.50     | 0.70  |  |  |
| D      | 20.80    | 21.34 |  |  |
| D1     | 17.43    | 17.83 |  |  |
| E      | 15.75    | 16.13 |  |  |
| E1     | 13.06    | 13.46 |  |  |
| E2     | 4.32     | 4.83  |  |  |
| е      | 5.45 BSC |       |  |  |
| L      | 19.85    | 20.25 |  |  |
| L1     | -        | 4.49  |  |  |
| ФР     | 3.55     | 3.65  |  |  |
| Q      | 5.59     | 6.19  |  |  |
| S      | 6.15 BSC |       |  |  |

# **Absolute Maximum Ratings**

(Tc = 25°C unless otherwise specified)

| Parameter                                 | Symbol              | Ratings            | Unit |
|-------------------------------------------|---------------------|--------------------|------|
| Drain-Source Voltage                      | V <sub>DS</sub>     | 1200               | v    |
| Gate - Source Voltage (DC)                | V <sub>GS</sub>     | -10/+22            | v    |
| Recommended Operation Value               | V <sub>GS(op)</sub> | -5/+18             | v    |
| Drain Current-Continuous Tc=25°C Tc=100°C | I <sub>D</sub>      | 30<br>21           | A    |
| Pulse Drain Current                       | I <sub>DM</sub>     | 80                 | A    |
| Total Power Dissipation                   | P <sub>D</sub>      | P <sub>D</sub> 150 |      |
| Storage Temperature Range                 | T <sub>STG</sub>    | -55 to +175        | °C   |
| Operating Junction Temperature Range      | TJ                  | -55 to +175        | °C   |



# DAC080N120PY4

# Electrical Characteristics @ T<sub>J</sub> =25°C (unless otherwise specified)

| Parameter                            | Symbol                | Conditions                                                                                            |                                              | Min. | Тур. | Max. | Unit |
|--------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|------|------|------|------|
| OFF Characteristics                  |                       |                                                                                                       |                                              |      |      |      |      |
| Drain-Source Breakdown Voltage       | BVDSS                 | V <sub>G</sub> s=0V , I <sub>D</sub> =1mA                                                             |                                              | 1200 | -    | -    | V    |
| Zero Gate Voltage Drain Current      | Ipss                  | V <sub>DS</sub> =1200V<br>V <sub>GS</sub> =0V                                                         | TJ=25℃                                       | -    | 1    | 50   | μA   |
|                                      |                       |                                                                                                       | TJ=150°C                                     | -    | 5    | 200  |      |
| Gate-Source Leakage Current          | Igss                  | V <sub>GS</sub> = 22V , V <sub>DS</sub> = 0V                                                          | •                                            | -    | -    | 100  | nA   |
| Gate-Source Leakage Current          | 1655                  | V <sub>GS</sub> =-10V , V <sub>DS</sub> =0V                                                           |                                              | -    | -    | -100 |      |
| ON Characteristics                   | ·                     |                                                                                                       |                                              |      |      |      |      |
| Gate Threshold Voltage               | V <sub>GS(th)</sub>   | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> =5mA                                               |                                              | 2.0  | 3.0  | 4.5  | V    |
|                                      |                       | .,                                                                                                    | TJ=25°C                                      | -    | 80   | 100  | mΩ   |
| Drain-Source On-State Resistance     | RDS(on)               | V <sub>GS</sub> = 18V , I <sub>D</sub> = 15A                                                          | TJ=175°C                                     | -    | 128  | -    |      |
| Internal Gate Resistance             | R <sub>G</sub> (int.) | f=1MHz , V <sub>AC</sub> =25mV                                                                        | 1                                            | -    | 4.0  | -    | Ω    |
| Dynamic Characteristics              |                       |                                                                                                       |                                              |      |      |      |      |
| Input Capacitance                    | Ciss                  |                                                                                                       | V <sub>DS</sub> =800V<br>V <sub>GS</sub> =0V |      | 890  | -    |      |
| Output Capacitance                   | Coss                  | V <sub>DS</sub> =800V<br>V <sub>GS</sub> =0V                                                          |                                              |      | 65   | -    | pF   |
| Reverse Transfer Capacitance         | Crss                  | f =250kHz                                                                                             |                                              | -    | 6    | -    |      |
| Turn-On Switching Energy             | Eon                   | V <sub>DD</sub> =800V<br>V <sub>GS</sub> =-5/+18V<br>I <sub>D</sub> =15A<br>R <sub>G(ext)</sub> =2.0Ω |                                              | -    | 186  | -    | μJ   |
| Turn-Off Switching Energy            | Eoff                  |                                                                                                       |                                              | -    | 46   | -    |      |
| Total Switching Energy               | Etot                  |                                                                                                       |                                              | -    | 232  | -    |      |
| Switching Characteristics            |                       |                                                                                                       |                                              |      |      |      |      |
| Turn-On Delay Time                   | t <sub>d(on)</sub>    | \/ -000\/                                                                                             |                                              | -    | 16   | -    | _    |
| Rise Time                            | tr                    | V <sub>DD</sub> =800V<br>V <sub>GS</sub> =-5/+18V                                                     |                                              | -    | 23   | -    |      |
| Turn-Off Delay Time                  | td(off)               | $I_D = 15A$<br>$R_{G(ext)} = 2.0\Omega$                                                               |                                              | -    | 26   | -    | ns   |
| Fall Time                            | tf                    |                                                                                                       |                                              | -    | 10   | -    |      |
| Total Gate Charge                    | Qg                    | V <sub>DD</sub> =800V                                                                                 |                                              | -    | 53   | -    |      |
| Gate to Source Charge                | Qgs                   | V <sub>GS</sub> =-5/+18V                                                                              |                                              |      | 15   | -    | nC   |
| Gate to Drain Charge                 | Qgd                   | I <sub>D</sub> =15A                                                                                   |                                              | -    | 18   | -    |      |
| Body Diode Characteristics           |                       |                                                                                                       |                                              |      |      |      |      |
| Diode Forward Voltage                | Vsp                   | V <sub>GS</sub> =-5V , I <sub>SD</sub> =15A                                                           |                                              | -    | 4.1  | -    | V    |
| Diode Source Current                 | Is                    |                                                                                                       |                                              | -    | -    | 30   | Α    |
| Maximum Diode Source Current (DC)    | Isм                   |                                                                                                       |                                              | -    | -    | 80   | Α    |
| Reverse Recovery Time                | Trr                   | I <sub>SD</sub> =15A , V <sub>DD</sub> =800V<br>dir/dt=1000A/µs                                       |                                              | -    | 34   | -    | ns   |
| Reverse Recovery Charge              | Qrr                   |                                                                                                       |                                              | -    | 112  | -    | nC   |
| Thermal Resistance                   | ·                     |                                                                                                       |                                              |      |      |      |      |
| Thermal Resistance, Junction-to-Case | RθJc                  |                                                                                                       |                                              | -    | -    | 1.0  | °C/W |

Rev1.0 Mar 2025 - 2 -



# **Typical Performance**

Fig 1. Output Characteristics, T<sub>J</sub> = 25°C

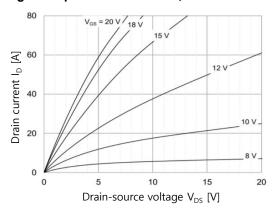



Fig 2. Output Characteristics, T<sub>J</sub> = 175°C

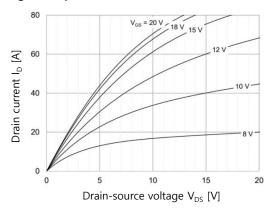



Fig 3. On-Resistance Variation vs. Temperature

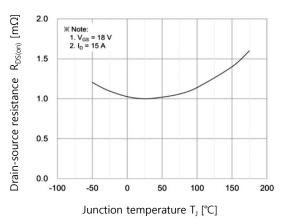



Fig 4. Transfer Characteristics

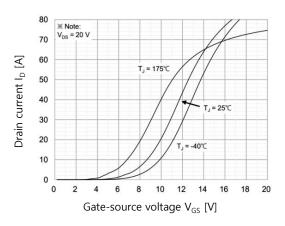



Fig 5. Threshold Voltage vs. Temperature

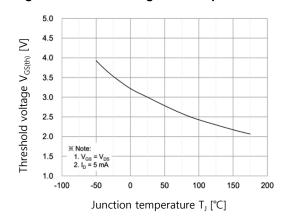
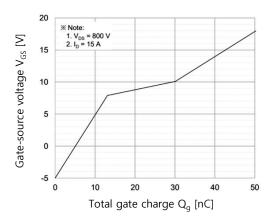




Fig 6. Gate Charge Characteristics



Rev1.0 - 3 - Mar 2025



### **Typical Performance**

Fig 7. Capacitance Characteristics

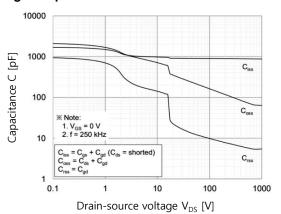



Fig 8. Stored Energy in Output Capacitance

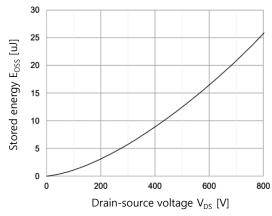



Fig 9. Body Diode Characteristics @ 25°C

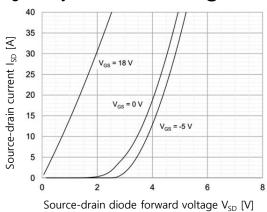



Fig 10. Body Diode Characteristics @ 175°C

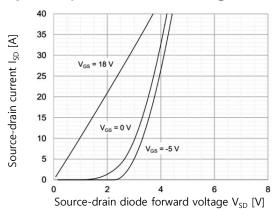



Fig 11. Max. PD Derating VS Case Temperature

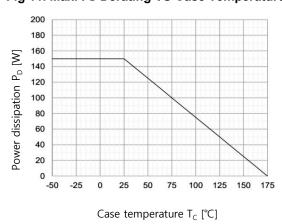
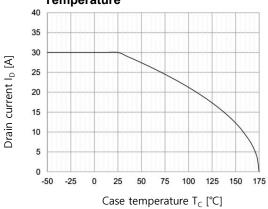




Fig 12. Continuous ID Derating VS Case Temperature



www.dacosemi.com.tw

Rev1.0 - 4 - Mar 2025



# **Typical Performance**

Fig 13. Transient Thermal Impedance

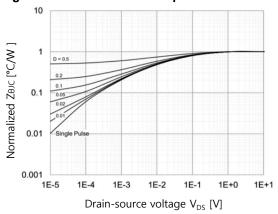



Fig 15. Clamped Inductive Switching Energy vs Drain Current

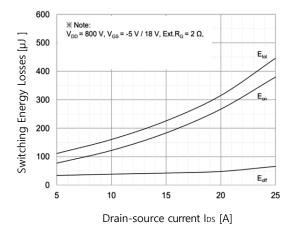



Fig 14. Safe Operating Area

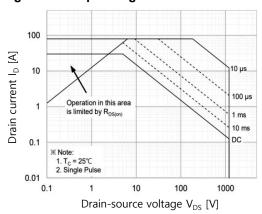
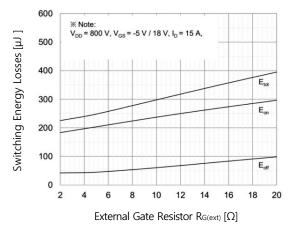




Fig 16. Clamped Inductive Switching Energy vs External Gate Resistor R<sub>G(ext)</sub>



Rev1.0 - 5 - Mar 2025





### **Disclaimer**

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice. For the most up-to-date version, please visit our website.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.